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Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equa-
tions by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed,
and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet bound-
ary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice
directions. The boundary conditions are first inspected analytically by applying systematically the results of a
multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an
equal footing, although they were originally derived from very different principles. It is concluded that all five
boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann
method. The five methods are then compared numerically for accuracy and stability through benchmarks of
two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the
others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired
trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be
classified into two major groups. The first group comprehends boundary conditions that preserve the informa-
tion streaming from the bulk into boundary nodes and complete the missing information through closure
relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number.
Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit
generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.
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I. INTRODUCTION

The lattice Boltzmann �LB� method has established itself
as a tool with growing acceptance for the numerical simula-
tion of fluid flows. However, in spite of several important
breakthroughs in the past decades, many aspects of the
method have been analyzed only recently. A variety of radi-
cally different approaches is consequently found in the litera-
ture, and a general consensus on specific implementation is-
sues is often lacking. Even such a common topic as the
implementation of boundary conditions is not treated in a
unified manner. This state of affairs raises numerous difficul-
ties, from the choice of an appropriate boundary condition to
the evaluation of the numerical error. A selection of com-
monly used boundary conditions is therefore reviewed under
a common light and compared in the present paper. The re-
view concentrates on the implementation of Dirichlet veloc-
ity boundary conditions, which prescribe a given velocity
profile along boundaries of the numerical domain. Further-
more, only straight boundaries are considered that traverse
the nodes of the numerical grid, and which are aligned with
the main directions of the grid.

Lattice Boltzmann models do not directly simulate the
evolution of the flow velocity. Instead, they calculate the

dynamics of particle populations which stem from a micro-
scopic description of the fluid. While the macroscopic pres-
sure and velocity fields are easily calculated from the particle
populations, the reverse procedure is more contrived. Thus,
implementing a velocity condition on straight boundaries
boils down to finding a way to translate from macroscopic
flow variables to particle populations. This problem has been
approached by authors from different viewpoints, some of
them based on the kinetic theory of gases, and some of them
on a hydrodynamic description of fluids.

Although the numerical scheme of the LB method is de-
rived from microscopic physics, it is able to recover accurate
solutions of the macroscopic Navier-Stokes equations. This
can be shown in various ways through an asymptotic analy-
sis, in which particle populations are formally related to
macroscopic flow variables. An analysis of this type is how-
ever not always conducted in the literature for boundary con-
ditions, and only little is known about their hydrodynamic
limit. In the present paper, the boundary conditions are there-
fore inspected with the help of a Chapman-Enskog multi-
scale analysis �see, e.g., Refs. �1–3��, which relates the lattice
Boltzmann model to the equations of a weakly compressible
fluid. The results of this analysis are reproduced in Sec. II B.
Other approaches could however also be considered for this
study. The reader is, for example, pointed to the asymptotic
analysis presented in Ref. �4�, in which the LB model is
directly related to the incompressible Navier-Stokes equa-
tions.

The paper starts with an overview of the widely used
lattice Boltzmann Bhatnagar-Gross-Krook �BGK� method
�1,2,5�, which is abbreviated as LBGK. After this, the paper
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introduces five different boundary conditions that can be
found in the literature. Some well-known properties of the
LB method are repeated to make this presentation accessible
even to an audience less familiar with this model. A set of
two-dimensional �2D� and three-dimensional �3D� bench-
marks is finally described, which challenge the LBGK
method with each of these boundary conditions as a numeri-
cal solver for the incompressible Navier-Stokes equations.

Aiming at a succinct comparison between different
boundary conditions, the paper purposely avoids addressing
advanced topics, such as the implementation of off-lattice
boundaries, or the treatment of complex fluids. In particular,
fluid compressibility effects are not analyzed in the bench-
mark section, although the LBGK method is able to simulate
weakly compressible isothermal flows �2,3,16�. Terms re-
lated to fluid compressibility are however accounted for in
the theoretical discussion of the boundary conditions.

II. THEORETICAL BACKGROUND

A. LBGK method

Lattice Boltzmann simulations are executed on a regular
grid. The state of the system consists of q variables f i , i
=0¯q−1 on each grid node, called particle populations.
The topology of a lattice is defined by q lattice vectors ci , i
=0¯q−1. Thus, a node attributed to the space location r
finds its neighbors at the location r+ci. Figure 1 displays
these vectors for the D2Q9 lattice, a common candidate for
the implementation of 2D simulations �3,6�.

The hydrodynamic variables on each node are defined as
moments of the particle populations. The particle density �
stands for the moment of order 0, and the fluid momentum
�u for the moment of order 1,

� = �
i=0

q−1

f i �1�

and

�u = �
i=0

q−1

ci f i. �2�

The moment of order 2 yields the tensor �, and the moment
of order 3 yields the tensor R,

� = �
i=0

q−1

cici f i �3�

and

R = �
i=0

q−1

cicici f i. �4�

These moments can be related to hydrodynamic flow vari-
ables through a multiscale analysis. In particular, the tensor
� is proportional to the strain rate �see Sec. II B�. Equations
�3� and �4� use a tensor notation without explicit space in-
dexes. In a d-dimensional space, Eq. �3� denotes, for ex-
ample, d2 scalar equations, which in full index notation are
written as ���=�i=0

q−1ci�ci�f i, for � ,�=1¯d.
These vectors and tensors, as well as all other expressions

in this paper, are written in a system of lattice units. In this
system, the time interval between two iteration steps and the
lateral or horizontal spacing between two grid nodes are
unity. The speed of sound cs in incompressible fluids is a
constant depending on the lattice. An important corollary of
this is that the Mach number Ma=U /cs of a fluid is propor-
tional to a characteristic fluid velocity U, expressed in lattice
units. LB models can be used in a low Mach-number regime
to simulate incompressible flows. In that case, the pressure p
of the fluid is related to the particle density through the equa-
tion of state for an ideal gas,

p = cs
2� . �5�

A LB iteration takes the system from a discrete time step t to
t+1 and consists of two steps. The collision step evaluates
first a collision operator � on each lattice node, and takes the
particle populations f i to their post-collision value f i�. This
operator is local to each node,

f i��r,t� = �i�f0�r,t�, f1�r,t�, . . . , fq−1�r,t�� . �6�

The collision is followed by a streaming step, which takes
the post-collision variables to a neighbor node determined by
the corresponding lattice vector:

f i�r + ci,t + 1� = f i��r,t� . �7�

LB models possess exact mass and momentum conservation
laws which are not subject to numerical approximation. This
is expressed by the fact that the precollision populations f i
and their post-collision counterparts f i� yield the same mass
and momentum. Thus,

�
i

�i = 0 �8�

and

�
i

ci�i = 0. �9�

The common LBGK model �1,2,5� approximates the colli-
sion operator as a relaxation of the particle populations to a
local equilibrium distribution f i

eq, which depends only on the
value of � and u,

c1

c2

c3 c4 c5

c6

c7c8

x

y

FIG. 1. Lattice vectors for D2Q9. An additional vector with zero
components c0= �0,0� is defined, which denotes a rest particle
population.
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�i = − ��f i − f i
eq��,u�� . �10�

The parameter � determines the inverse time scale of the
relaxation process. Through the multiscale analysis in the
next section, this parameter can be formally related to the
kinematic shear viscosity � of the fluid,

� = cs
2� 1

�
−

1

2
� . �11�

The local equilibrium depends only on the macroscopic vari-
ables � and u. It can be viewed as a truncated expansion of
the Maxwell-Boltzmann distribution and is written as

f i
eq��,u� = �1 +

1

cs
2ci · u +

1

2cs
4Qi:uu� . �12�

The scalar product between two vectors is denoted by a
single dot �·�, and the contraction between two tensors by a
colon �:�. The tensors Qi are defined as Qi=cici−cs

2I for i
=0¯q−1, where I is the identity. The scalars ti are lattice
weights that account for the varying lengths of the lattice
vectors ci. Thus, a lattice is fully defined by means of the
lattice vectors ci, the lattice weights ti, and the speed of
sound cs. The benchmarks in this paper make use of the 2D
lattice D2Q9 and the 3D lattice D3Q19. On the D2Q9 lattice,
with the ordering of indexes used in Fig. 1, the lattice
weights are t0=4 /9, ti=1 /9 for i� �2,4 ,6 ,8	 and ti=1 /36
for i� �1,3 ,5 ,7	. The speed of sound on this lattice is de-
fined as cs

2=1 /3. The lattice-specific constants for the
D3Q19 lattice can be found, for example, in Refs. �3,6�.

A remarkable property of the equilibrium distribution is
that it possesses the same momenta as the particle popula-
tions for the conserved variables � and �u,

� = �
i=0

q−1

f i
eq �13�

and

�u = �
i=0

q−1

ci f i
eq. �14�

B. Multiscale analysis

Through a multiscale Chapman-Enskog analysis of the
LBGK model, it can be shown that the macroscopic vari-
ables defined in Eqs. �1� and �2� obey the Navier-Stokes
equation for a weakly compressible fluid. Only the results of
this analysis are shown here, and the reader is referred to
Refs. �1–3� for more details. In this analysis, the LB dynam-
ics is developed into a truncated Taylor series in space and
time, up to second-order accuracy. Furthermore, to separate
physical phenomena happening at different scales, the par-
ticle populations are expanded into a power-law series with
respect to a small parameter 	
1, f i=�k=0

� 	kf i
k. The two first

terms, of order O�	0� and order O�	1�, are sufficient to re-
cover asymptotically the dynamics of the Navier-Stokes
equation. Thus, the approximation

f i = f i
�0� + 	f i

�1� + O�	2� �15�

is made. The same approximation is applied to develop the
time derivative over two scales,

�t = 	�t1 + 	2�t2 + O�	3� . �16�

Space derivatives are analyzed at a single scale,

� = 	�1 + O�	2� . �17�

The parameter 	 is used in analytical developments to for-
mally separate time scales, but it is skipped in the remainder
of this paper to enhance readability. The asymptotic and
scale separated form of the mass and momentum conserva-
tion laws in Eqs. �9� and �8� can be written as follows:

�t� + � · ��u� = 0 �18a�

and

�t��u� + � · ���0� + ��1� +
1

2
��t�

�0� + � · R�0��� = 0,

�18b�

where the operator � denotes a divergence on the last index
of the involved tensors. The tensors ��0�, ��1�, and R�0� are
velocity moments equivalent to those defined by Eqs. �3� and
�4�, but evaluated on the components f i

�0� and f i
�1� of the

particle populations. The nature of the physics described by
the momentum equation, Eq. �18b�, depends on the form of
these tensors. In the case of the LBGK model, the compo-
nent f i

�0� of the particle populations is equal to the equilib-
rium distribution,

f i
�0� = f i

eq��,u� . �19�

Assuming a low Mach-number regime, Eqs. �18a� and �18b�
are then equivalent to the Navier-Stokes equations for a
weakly compressible fluid with fixed bulk viscosity. The
terms in the multiscale analysis are approximated with finite
series of second order, which leads to the conclusion that the
LB method is second-order accurate in space and time for the
numerical simulation of weakly compressible fluids.

Although this is not the point of view adopted in the
present paper, we also point the reader to an alternative the-
oretical framework in which the LB model is viewed as a
discrete analog of the continuum Boltzmann equation with a
BGK collision term �7�. This discretization is again second-
order accurate, even though the explicit time stepping
scheme of Eq. �7� seems to indicate first-order accuracy in
time. As it is shown in Ref. �8�, the streaming operator of the
Boltzmann equation can be approximated by a second-order
accurate trapezoidal rule, after which the resulting implicit
scheme is recast into the explicit LBGK model by an appro-
priate change of variables.

It is interesting to point out that the terms of order O�	0�
in Eq. �18b� yield the Euler equation, and that the viscous
contributions to the dynamics are determined by the O�	1�
tensor ��1�. During the implementation of a boundary con-
dition, it is not only central that boundary nodes implement
an appropriate value of � and u, which determines the form
of the equilibrium distribution, and thus the O�	0� Euler
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components of the dynamics. As has been pointed out previ-
ously among others in Ref. �9�, it is also crucial that the
first-order tensor ��1� is implemented correctly to ensure a
proper representation of fluid viscosity. The multiscale analy-
sis is helpful to understand the relation between the O�	1�
terms components of LB models and the macroscopic vari-
ables. For the LBGK model, the value of f i

�1� reads as

f i
�1� = −

ti

cs
2�
�Qi:� � u − ci � :�uu +

1

2cs
2 �ci · ���Qi:�uu�� .

�20�

It contains a dominating term proportional to u and two
terms scaling as the square of u which are less important at
low Mach numbers. They cancel for symmetry reasons dur-
ing the evaluation of the tensor ��1�,

��1� = −
2cs

2

�
�S , �21�

where S is the strain rate tensor,

S =
1

2
��u + ��u�T� . �22�

As terms with nonlinear velocity components do not contrib-
ute to ��1�, it is reasonable to approximate f i

�1� by its linear
term only,

f i
�1� 
 −

ti

cs
2�

Qi:� � u . �23�

Indeed, both values of f i
�1� in Eq. �20� and Eq. �23� yield the

same stress tensor. They are therefore equivalent in view of
their effect on fluid flow, as the asymptotic dynamics in Eq.
�9� only depends on ��1�, and not on the details of the first-
order particle populations f i

�1�.
In summary, the particle populations can be split into two

main components which fully determine the hydrodynamic
behavior of the model. The term of order O�	0� yields the
equilibrium distribution, which depends on the macroscopic
variables � and u via Eq. �12�. The term of order O�	1�
depends additionally on the velocity gradients. For the
implementation of a boundary condition it is therefore nec-
essary to possess knowledge of both the macroscopic vari-
ables and their gradients.

By introducing the results of the multiscale expansion into
Eqs. �18a� and �18b�, and by taking the limit of small Mach
number, the Navier-Stokes equations for an incompressible
fluid are recovered,

� · u = 0, �tu + �u · ��u = − �p + ��2u . �24�

These equations are used as a reference in the benchmarks of
Sec. V, to verify the quality of the boundary conditions.

III. IMPLEMENTATION OF BOUNDARY
CONDITIONS

Prior to the collision step, some particle populations are
unknown on boundary nodes, as they are lacking correspond-

ing neighbors. This is illustrated in Fig. 2 for an upper
boundary on a D2Q9 lattice. The particle populations on the
boundary node are represented schematically by a lattice
vector pointing into the direction along which they were
propagated during the previous streaming step. Three particle
populations, indicated by dashed vectors, are unknown. The
role of a boundary condition is to find a substitution for the
three missing populations, and potentially also for the re-
maining six, in a way which is consistent with the dynamics
of the model and which leads to the desired macroscopic
behavior on the domain boundary.

When only the unknown populations are substituted, the
action of a boundary condition can be viewed as the effect of
a fictitious fluid portion located outside the numerical grid.
This fluid portion streams the results from an imaginary LB
operation into the boundary node and attributes a value to the
unknown particle populations. In other types of boundary
conditions, the vision of a fictitious LB dynamics is aban-
doned, and all particle populations are replaced on the
boundary node.

Once the substitutions have been made, all boundary con-
ditions described in this paper execute a conventional LBGK
collision and streaming step. Boundary nodes implement
therefore the same dynamics as bulk nodes, and they are also
analyzed in the same theoretical terms. In particular, the re-
sults from the multiscale analysis displayed in Sec. II B also
apply to boundary nodes. Thus, particle populations on
boundaries can be split into an equilibrium component f i

eq

and an off-equilibrium contribution f i
�1� according to Eqs.

�15� and �19�.
An important constraint in determining these values is

given by the conservation laws in Eqs. �8� and �9�. Exact
local mass and momentum conservation are pillars of the LB
method, as they ensure among others an exceptional numeri-
cal stability. It is therefore desirable that they are respected
on boundary nodes as well. This is achieved by making sure
that mass and momentum, as computed from Eqs. �1� and
�2�, yield exactly the desired value. In that case, conservation
laws are automatically verified, as it is seen by inserting Eq.
�10� into Eqs. �8� and �9�, and using the properties of Eqs.
�13� and �14�. The following sections do therefore not refer
to conservation laws, but instead insist on an accurate imple-
mentation of Eqs. �1� and �2�, without numerical approxima-
tion. It should be pointed out for clarity that even though
these conservation laws guarantee equal mass in the pre- and
post-collision state of a cell, they do not guarantee global
mass conservation in the system. It has been shown in Ref.
�10� that a simulation may gain or lose mass during time

FIG. 2. Boundary node on the top row of a grid. The hatched
region, located outside the grid, does not participate in the simula-
tion. Particle populations on the boundary node are represented by
their lattice vectors; dashed vectors stand for unknown populations.
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evolution, even with no-slip boundaries. An interpretation of
this fact is that the actual mass balance is influenced by how
the density is evaluated on boundaries �see Sec. III A�.

The first step toward the implementation of a boundary
condition is the construction of the equilibrium distribution,
defined in Eq. �12�, from � and u. The velocity u is known
by definition on velocity boundaries. The value of the par-
ticle density � is however missing and needs to be computed
by a method described in the next section.

A. Evaluation of the density on boundaries

With a Dirichlet velocity boundary condition, the incom-
pressible Navier-Stokes equations always yield a unique so-
lution. No additional boundary condition for the pressure is
required. With traditional numerical solvers for the Navier-
Stokes equations, this fact is obvious, because the pressure is
not treated as an independent variable. Instead, it is viewed
as a functional of the velocity field, and may be determined
by solving a Poisson equation.

The lattice Boltzmann approach on the other hand uses a
quasicompressible method to solve the Navier-Stokes equa-
tions. The fluid density � is simulated as an independent
variable in a regime close to fluid incompressibility and re-
lated to the pressure through Eq. �5�. As it is shown in this
section, the value of the density can however be determined
on straight walls from the known particle populations �indi-
cated by solid arrows in Fig. 2� and the value of the velocity.
This method works on any 2D and 3D grid and is used by
practically all authors of velocity boundary conditions. It is
therefore applied throughout in this paper, for all boundary
conditions and for all benchmark problems in Sec. V.

The density of a boundary node can be split into three
components. The first, �−, is the sum of the unknown particle
populations. The second, �+, is the sum of the particle popu-
lations opposite to the unknown ones, and the third, �0, sums
up the particle populations whose lattice vector is tangential
to the boundary or zero. Let u� be the projection of the
velocity onto the boundary normal pointing outside of the
numerical grid. Then, the particle density of the boundary
node is

� = �− + �+ + �0, �25�

and the normal momentum

�u� = �+ − �−. �26�

These equations are combined to obtain

� =
1

1 + u�

�2�+ + �0� , �27�

which is independent of the unknown quantity �−. On the
D2Q9 lattice of Fig. 1, and on a top grid node shown in Fig.
2, the variables above are defined as follows. The partial
densities are �−= f3+ f4+ f5, �+= f7+ f8+ f1, and �0= f2+ f6
+ f0. The normal velocity is given by the y component of the
boundary velocity, and Eq. �27� becomes

� =
1

1 + uy
�2�f3 + f4 + f5� + f2 + f6 + f0� . �28�

This method can obviously only be applied to straight
boundaries. On other types of boundaries, for example, on
corner nodes, the locally available information on a cell may
be insufficient for the evaluation of the density. In that case,
it is common to extrapolate the density from neighboring
bulk cells. For the benchmark problems in Sec. V, second-
order accurate extrapolation is used to evaluate the pressure
in the four corners in 2D problems, and in the eight corners
and the 12 edges in 3D problems.

B. Preserving the known particle populations

The two boundary conditions BC1 and BC2, which are
introduced in Sec. IV and listed in Table I, compute values
for the unknown particle populations only, and leave the oth-
ers untouched. By doing so, they exploit all the information
available from the LB dynamics in the bulk of the simula-
tion. As it is shown in Sec. V, they are rewarded by achieving
more accurate results in 2D flows, but lose this advantage in
a 3D problem.

As it is pointed out in the introduction to Sec. III, it is
important that the values for the density and the velocity are
recovered accurately from Eqs. �1� and �2� on boundary
nodes. It is clear from Sec. III A that the particle density of a
boundary node depends on the known populations and on the
value of uy, but not on the detail of the unknown populations.
Therefore, in situations where only the unknown particle
populations are replaced, the value of � needs not �and can-
not� be enforced explicitly. Enforcing the value of the veloc-
ity from Eq. �2�, on the other hand, yields two equations in
2D and three equations in 3D. Additional closure relations
are therefore required to match the number of unknown par-
ticle populations, which amount to three on the D2Q9 lattice,
and to nine �for D3Q27� or five �for D3Q19 and D3Q15� on
3D lattices.

It was argued in Sec. II B that the hydrodynamic limit of
the lattice Boltzmann equation is expressed in terms of the
quantities �, u, and ��1�. To help understand the boundary
conditions from a hydrodynamic point of view, it is therefore
good to reinterpret the closure relations suggested by the
authors of boundary conditions as closure relations for the
values of the stress tensor ��1�. As ��1� is symmetric, this
introduces a set of three equations in 2D, and six equations
in 3D, which are enforced by Eq. �3�. Some of the equation
for ��1� �Eq. �3�� are however linearly dependent on those
for u �Eq. �2��. In the 2D example illustrated in Fig. 2, the
equation for �xy

�1� depends linearly on the equation for ux, and
the equation for �yy

�1� depends on the one for uy. Generally

TABLE I. The boundary conditions reviewed in this paper.

Method Replaces all f i’s Local Explicit in 3D

BC1 �Inamuro et al.� No Yes No

BC2 �Zou-He� No Yes Yes

BC3 �Regularized� Yes Yes Yes

BC4 �FD� Yes No Yes

BC5 �Nonlinear FD� Yes No Yes
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speaking, a total of d equations for the tensor components
�n�

�1�, for �=0¯d−1, are linearly dependent on the equa-
tions of u�. Here, the index n labels the direction of the
boundary normal �in the above example, this is the y index�.
In 2D in particular, the two equations for u and the remain-
ing equation for ��1� yield three closure relations, in the
same amount as when a closure relation is introduced for
each of the missing particle populations.

C. Replacing all particle populations

The boundary conditions BC3, BC4, and BC5 in Table I
use the known particle populations only to compute the par-
ticle density � and, in the case of BC3, the stress tensor ��1�.
After this, they disregard all particle populations and replace
their value by new ones, based on the velocity and the com-
puted macroscopic variables. As they treat all particle popu-
lations in the same way, they can be formulated generically
and are easily implemented on various 2D and 3D lattices.
Furthermore, they turn out to be more stable than BC1 and
BC2, and can therefore be used at substantially higher Rey-
nolds numbers.

A tempting approach to setting up such velocity bound-
aries might be to initialize all particle populations, the known
and the unknown ones, to their equilibrium distribution with
the imposed velocity and the density computed from Eq.
�28�. It is however clear from the discussion in Sec. II B that
this method is inappropriate, as it respects the O�	0� contri-
butions to the dynamics, but neglects the hydrodynamically
relevant O�	1� terms. As a result, the quality of the simula-
tion is spoiled, not only close to boundaries, but in the full
simulated domain. The expected second-order accuracy can
consequently not be reached. To illustrate this issue, Fig. 3
displays the velocity profile obtained for the steady-state so-
lution of a 2D channel flow. The no-slip �zero velocity� walls

are implemented once via this equilibrium approach, and
once with the obviously more accurate boundary condition
BC3. An exact visual match between the exact analytical
solution and the numerical result is obtained with the accu-
rate boundary condition. With the equilibrium boundary con-
dition on the other hand, the numerical values are far from
the analytical curve. Although the velocity has a correct no-
slip value on the boundary, the velocity gradient starts out
erroneously. This confirms the theoretical considerations of
the preceding section, in which the O�	0� components of the
particle populations are shown to represent macroscopic
variables, and the O�	1� components their gradients.

It is finally noted that one may avoid rewriting the values
of all particle populations in an actual implementation to
increase numerical efficiency. Once the density and velocity
on a boundary node are computed, particle populations
which leave the numerical domain �corresponding to the
three upward pointing arrows on Fig. 2� have no more influ-
ence on the future evolution of the system. This is due to the
fact that BGK collision in Eq. �10� does not introduce a
coupling between lattice directions, except during the evalu-
ation of macroscopic variables. The value carried by particle
populations that leave the domain is therefore irrelevant in
the LBGK model, but may still be important if another type
of collision is used.

IV. PRESENTATION OF THE REVIEWED BOUNDARY
CONDITIONS

The five boundary conditions listed in Table I are ana-
lyzed in this paper. The table specifies whether a boundary
condition replaces all particle populations by a new value, or
only the unknown ones. It also states whether they are local
to a given boundary node, or if they need to access neigh-
boring nodes in order to execute their algorithm. The original
papers of boundary conditions most often concentrate on 2D
implementations. Table I specifies whether there exists a
straightforward way to extend them to 3D, or if this requires
the solution of an implicit equation.

Boundary condition BC1 is described in a paper by Ina-
muro et al. �11� in 1995. Boundary condition BC2 was pre-
sented subsequently in 1997 by Zou and He �12�. Both meth-
ods modify only the value of unknown particle populations,
and both are local. While BC2 extends naturally to any 3D
lattice, 3D formulations of BC1 are more contrived and re-
quire the solution of an implicit equation at each iteration
step of the method. Boundary condition BC3, formulated by
Latt and Chopard �3�, replaces all particle populations by a
new value. It is local and extends naturally to any 3D lattice.
Boundary conditions BC4 and BC5 are nonlocal, as they use
finite-difference �FD� approximations to evaluate the veloc-
ity gradients in Eqs. �20� and �23�. They are based on the
work by Skordos �13�, with two minor modifications that are
discussed in Secs. IV D and IV E.

In the remaining part of this section, the five reviewed
boundary conditions are introduced within a common frame-
work. A formalism is used in which all particle populations f i
on a boundary node are replaced by alternative populations
gi resulting from the boundary condition algorithm. It is

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y−position in channel

u x

Poiseuille profile
Equilibrium on boundary
Regularized boundary condition BC3

FIG. 3. 2D channel flow, simulated once with an equilibrium
distribution on boundaries, and once with the regularized boundary
condition BC3. The solid line plots the analytic Poiseuille profile.
Although only 11 data points are used to resolve the channel width,
the result obtained with BC3 is visually indistinguishable from the
Poiseuille profile. With equilibrium boundaries on the other hand,
the velocity gradients are ill represented on boundary nodes, which
impairs the accuracy of the whole simulation.
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stated explicitly when some of the original f i’s are kept. It is
then assumed that a LBGK collision is applied to the popu-
lations gi, followed by a streaming step. Explicit formulas
are given for the D2Q9 lattice of Fig. 1 and for a top grid
node as in Fig. 2. Furthermore, it is explained how the algo-
rithms can be extended to 3D lattices.

All presented boundary conditions are shown to recover
the desired hydrodynamic behavior. According to the discus-
sion in Sec. II B, this amounts to showing that the expected
value for the boundary velocity is obtained from Eq. �2�, and
that the stress tensor calculated from Eq. �3� is consistent
with its hydrodynamic value predicted by Eq. �21�. These
requirements are enforced by construction in the boundary
conditions BC3, BC4, and BC5, and are therefore valid for
obvious reasons. For the boundary conditions BC1 and BC2
however, only the value of the velocity is explicitly enforced.
In this paper, the value of the stress tensor is therefore evalu-
ated separately for the D2Q9 lattice, as a proof of validity.
For this, the six known particle populations are assumed to
obey the value predicted by the multiscale analysis in Eq.
�23�, and thus, to depend on �, u, and the gradients of u.
Based on this assumption, the missing particle populations
are evaluated from the algorithm of the boundary condition,
and the stress tensor ��1� is computed from Eq. �3�.

A. Inamuro et al. method (BC1)

The boundary condition BC1 by Inamuro et al. uses a
reasoning based on the kinetic theory of gases to find an
appropriate value for the missing particle populations. It as-
sumes that the missing populations are at a local thermohy-
drodynamic equilibrium and thus yield the discrete analog of
a Maxwell-Boltzmann distribution. This distribution is how-
ever centered around a fictitious density �� and velocity u�,
both of which are different from the macroscopic fluid vari-
ables � and u. While �� is a free variable, u� is assumed to
differ from u only by a “slip velocity” s, which is tangential
to the wall, u�=u+s. These assumptions introduce a set of
two unknowns in 2D, and three unknowns in 3D. For an
upper boundary on a D2Q9 lattice, they read as

gi = f i
eq���,ux + sx,uy� for i = 3,4,5, �29�

where f i
eq is the equilibrium distribution described by Eq.

�12�. As has been emphasized in Sec. III B, the value of the
velocity u needs to be enforced on the boundary via Eq. �2�.
This system of two equations can be solved for the two un-
knowns �� and sx, with the following result:

�� = 6
− �uy + f1 + f7 + f8

1 + 3uy
2 − 3uy

, �30�

sx = − ux + 6
�ux + f1 + f2 − f6 − f7

���1 − 3uy�
. �31�

In these relations, the lattice constants have been replaced by
their numerical value for the D2Q9 lattice. The missing
populations are now evaluated with the help of Eq. �29�, and
the other populations are left unchanged,

gi = f i for i = 0,1,2,6,7,8. �32�

In 3D, the slip velocity s has two independent components.
The unknowns thus amount to 3, which matches the number
of closure relations introduced by Eq. �2�. This system of
equations is more difficult to solve than in the 2D case, and
to our knowledge, no analytic solution is presently known.
For the 3D benchmarks in Sec. V, the lattice Boltzmann code
solves these equations numerically on each boundary cell
and at every time step with the help of a multivariate
Newton-Raphson solver �14�.

The velocity u is explicitly enforced by this boundary
condition, but nothing is known a priori about the value of
the stress tensor. The method described in the introduction of
Sec. IV is now applied to evaluate ��1� for the D2Q9 lattice,
by making use of a computer algebra system. The following
values are found:

�xx
�1� =

�

9��1 − 3uy�2�� − 2Syy − 3�uy + 3�uy
2�

��10SxxSyy�1 − 3uy�2 + 6Sxy
2 �1 − 3uy + 3uy

2�

− ��3uy − 1��5Sxx�− 1 + 6uy − 12uy
2 + 9uy

3�

+ Syyux
2�3 − 9uy� + 18uxSxy�1

3
− uy + uy

2�� ,

�33a�

�yy
�1� = −

2

3�
�Syy , �33b�

and

�xy
�1� = −

2

3�
�Sxy . �33c�

The tensor components �yy and �xy yield an exact match
with the value expected from Eq. �21�. As has been pointed
out in Sec. III B, this is a direct corollary of the fact that the
equation for the velocity, Eq. �2�, is satisfied. The component
�xx is the only free parameter on a D2Q9 lattice, and can be
viewed as a signature of how the boundary condition influ-
ences the dynamics of the fluid. In its present form, Eq. �33�
is not very enlightening, and we present therefore two limit
values. The first represents the case of a no-slip wall, with
vanishing values of u,

�xx
�1� = �

− 5Sxx +
2

�
�3Sxy

2 + 5SxxSyy�

9� − 18Syy
when u = 0.

�34�

For the second limit case, �xx
�1� is expanded into a finite Tay-

lor series for small values of the components Sxx, Syy, and
Sxy. It is assumed that, in the limit of fluid incompressibility,
the Mach number Ma, and thus the velocity u in lattice units,
scales like the small parameter 	 �15�. The components of
the strain rate tensor S exhibit therefore order 	2 scaling.
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From the above Taylor series, only terms of order 	2 are
retained, and terms of the form S��S� or S��u are ne-
glected. This leads to the following approximation of Eq.
�33�:

�xx
�1� = −

5

9�
�Sxy + O�	3� . �35�

This expression is identical to the hydrodynamic tensor value
in Eq. �21�, with exception of the factor 5/9, which differs
from the expected factor 2/3 by 20%. This error has however
no important effect in practice, as the Inamuro et al. method
is found to be equally or even more accurate than the other
approaches in low Reynolds applications �see Sec. V�. One
may however point out that as a consequence of Eq. �35�, the
trace of ��1� is nonzero with BC1. This is a violation of the
continuity equation, because Eqs. �21� and �22� show that the
trace of ��1� is proportional to � ·u in the hydrodynamic
limit.

B. Zou-He method (BC2)

The boundary condition BC2 by Zou and He is based on
an idea referred to by its authors as “applying the bounce-
back rule to off-equilibrium parts.” This expression can be
understood as a reference to a symmetry property of the vari-
ables f i

�1� that follows from Eq. �23�. Let the opposite opp�i�
of a lattice direction i be defined by the relation copp�i�=−ci.
Then, Eq. �23� is symmetric under the operation of taking the
opposite direction,

f i
�1� = fopp�i�

�1� . �36�

This relation can be used to copy data from known particle
populations to the opposite, unknown ones. It may however
not be applied blindly to all unknown particle populations,
because this would conflict with Eq. �2� for the velocity. On
a D2Q9 lattice, for example, there is really only one degree
of freedom left on which the boundary condition may have
an influence. The choice made in the case of BC2 was to
apply Eq. �36� to the unknown particle population whose
lattice vector is parallel to the boundary normal. Thus, for an
upper boundary on a D2Q9 lattice, the following relation is
applied:

g4
�1� = f8

�1�. �37�

The remaining two unknown populations g3
�1� and g5

�1� are
computed by enforcing the values of the velocity through Eq.
�2�. On a D2Q9 lattice, the obtained values are

g3
�1� = f7

�1� +
1

2
�f6

�1� − f2
�1�� �38�

and

g5
�1� = f1

�1� +
1

2
�f2

�1� − f6
�1�� . �39�

The value of the unknown particle populations is constructed
by adding equilibrium and off-equilibrium parts,

gi = f i
eq��,u� + gi

�1� for i = 3,4,5. �40�

All other populations are kept as they are,

gi = f i for i = 0,1,2,6,7,8. �41�

As in the Inamuro et al. method BC1, the Zou-He method
BC2 enforces the value of the velocity explicitly, but does
not specify anything about the stress tensor. The values of
��1� can again be computed for the D2Q9 lattice, using the
procedure described in the introduction of Sec. IV. The re-
sulting expressions match exactly the hydrodynamic values
of ��1� claimed in Eq. �21�. This confirms analytically the
validity of the Zou-He boundary condition for 2D simula-
tions.

This algorithm cannot be used as it stands in 3D. In that
case, Eq. �2� yields three independent equations, but the
number of unknowns is larger �five or nine�. In that case, the
authors of Ref. �12� suggest to proceed as follows. To begin,
the “off-equilibrium bounce-back” rule, Eq. �36�, is applied
to assign a value to all missing particle populations. By do-
ing this, the exact value of the component u� is recovered for
the index � in the direction of the boundary normal. To keep
this relation valid, the sum over the value of the unknown
particle populations is kept invariant during subsequent op-
erations. The excess of momentum is then evaluated in the
remaining directions,

�� � �
i

f i
neqci� for � � � . �42�

Finally, the values �� are redistributed over the unknown
particle populations, in order to find an exact match for Eq.
�2�,

gi
neq = f i

neq − �
���

1

n�

ci��� for all unknown f i ’ s,

�43�

where n� is the number of unknown particle populations for
which ci� is nonzero.

C. Regularized method (BC3)

The method �3� by Latt and Chopard replaces all particle
populations on a boundary node. It first evaluates the value
of ��1�, based on the knowledge of the known particle popu-
lations. Then, the equations of the multiscale analysis in Sec.
II B are reversed to reconstruct all particle populations from
�, u, and ��1� in a way consistent with the hydrodynamic
limit of the model. With the use of Eq. �21�, and by exploit-
ing the symmetry of tensors Qi and of tensor ��1�, Eq. �23� is
rewritten as follows:

f i
�1� 
 −

�ti

cs
2�

Qi:S =
ti

2cs
4Qi:�

�1�. �44�

With this relation, the off-equilibrium part of the particle
populations can be reconstructed from the tensor ��1�. This
procedure is called a regularization of the particle popula-
tions, because it compels the f i

�1� to respect exactly �without
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numerical error� the symmetry properties of Eq. �21�, such as
the symmetry explicated in Eq. �36�.

The tensor ��1� is evaluated as follows. First, all unknown
particle populations are assumed to take the value obtained
by a “bounce-back of off-equilibrium parts,” as in Eq. �36�.
Thus, their value is described as f i= f i

eq�� ,u�+ fopp�i�− fopp�i�
eq .

It was emphasized in Sec. IV B that this relation may not be
used to define a boundary condition, because it prohibits an
exact implementation of Eq. �2�. It therefore is used tempo-
rarily only, to evaluate the value of ��1� by means of Eq. �3�.

After this, Eq. �44� is used to construct all particle popu-
lations,

gi = f i
eq��,u� +

ti

2cs
4Qi:�

�1� for i = 0 ¯ q − 1. �45�

It is obvious that not only � and u, but also the tensor ��1�

are recovered appropriately by this boundary condition.

D. Finite-difference velocity gradient method (BC4)

In the regularized approach of BC3, the stress tensor ��1�

is evaluated on the boundary from information locally avail-
able on the cell. The boundary condition BC4 computes ��1�

from Eq. �21� instead, by relating it to the strain rate tensor
S. The components of S are evaluated by a second-order
accurate finite-difference scheme, which accesses the value
of the velocity on neighboring grid cells. The algorithm of
BC4 is summarized by the following equation:

gi = f i
eq��,u� −

�ti

cs
2�

Qi:S for i = 0 ¯ q − 1, �46�

where the strain rate tensor S is defined as in Eq. �22�. The
velocity gradients of S that run along directions parallel to
the boundary are evaluated by a symmetric finite-difference
scheme. This presumes the knowledge of the velocity on
nearest-neighbor cells. Velocity gradients along the boundary
normal use nonsymmetric finite differences, which access the
velocity on nearest and next-to-nearest neighbors. Note that,
instead of evaluating the symmetric tensor S, one may alter-
natively compute all components of the nonsymmetric tensor
�u and calculate the population functions from Eq. �23�.
These two ways of constructing the boundary condition are
algebraically equivalent.

This boundary condition was presented in 1993 in a pio-
neering paper by Skordos �13�. It should be mentioned that
Ref. �13� makes a slightly different assumption on the
asymptotic value of ��1�, as it uses the following expression
in lieu of Eq. �21�, in which the density � resides inside the
spatial derivative:

��1� = −
cs

2

�
����u� + ����u��T	 . �47�

It has however been shown that Eq. �21�, which predicts the
proper deviatory strain rate for a compressible fluid, can be
recovered in a multiscale analysis by taking into account
derivatives of nonlinear velocity terms �3,16,17�. The differ-
ence between Eqs. �21� and �47�, however subtle, may have
a noticeable effect in compressible fluids. We decided there-

fore to depart from the original paper on this point, but em-
phasize that the credit for this boundary condition should be
attributed to Skordos �13�. It should also be mentioned that
Ref. �13� discusses both first- and second-order accurate
finite-difference approximations to velocity gradients, but
only second-order schemes are presented here.

An interesting discussion of boundary conditions with
finite-difference approximation to velocity gradients is pre-
sented in Ref. �9�. This paper points out that other choices
than Eq. �46� also lead to the expected value of the stress
tensor, and it proposes different closure schemes that are
compatible with the hydrodynamic limit of the model.

E. Nonlinear finite-difference method (BC5)

It is shown by multiscale analysis that Eq. �23� is a valid
approximation to Eq. �20� within the hydrodynamic scales of
the model. It is therefore clear that boundary conditions BC3
and BC4, which are based on this approximation, yield ac-
curacy of second order, consistent with the overall accuracy
of the lattice Boltzmann scheme. Beyond this asymptotic es-
timate, the accuracy may however vary in actual simulations,
due to higher-order effects that are not visible in the finite
expansion of Sec. II B. For this reason, it is sometimes ar-
gued that the full term of Eq. �20� should be implemented on
the boundary, to gain accuracy and numerical stability. In
order to test this conjecture numerically, a corresponding
boundary condition BC5 is presented in the following. It uses
the same principles as BC4, but also includes the nonlinear
velocity contributions to the particle populations. This ap-
proach has not been presented previously in the literature,
and serves only as a toy model to experiment with the limits
of BC4. It is explicated as follows:

gi = f i
eq��,u� −

ti

cs
2�
�Qi:� � u − ci � :�uu +

1

2cs
2 �ci · ��

��Qi:�uu�� for i = 0 ¯ q − 1. �48�

For the implementation of this method, the gradients of the
components of the tensor uu need to be evaluated via a
finite-difference scheme, additionally to the gradients of u.

V. BENCHMARKS

This section produces the results of lattice Boltzmann
simulations, based on the five reviewed boundary conditions.
For some of the simulated problems, analytical solutions are
known which describe the steady state of the flow. In that
case, the simulation is iterated until a steady state is reached.
Then, the numerical result is validated against the analytical
solution on every grid point, and the mean discrepancy be-
tween these two values is evaluated as a measure of quality
for the implemented boundary condition. Other benchmarks
focus on the time evolution of the flow. They keep track of
the time evolution of a scalar quantity �such as the average
energy in Sec. V C�, or the occurrence of a particular event
�as the maximum value of the enstrophy in Sec. V D�. Sev-
eral 2D benchmarks are presented, implemented on a D2Q9
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lattice, and one 3D benchmark on a D3Q19 lattice.
The simulated domains of all presented problems have a

rectangular shape. This raises the issue of how to implement
corner nodes and, in 3D, edge nodes that lie on the connec-
tion between two plane walls. Although some authors of
boundary conditions make suggestions on how to treat these
cases, some authors do not. To guarantee an equal treatment,
the present paper treats corners and edges always in the same
way, independently of the boundary condition that is being
tested. The finite-difference algorithm of BC5 was selected to
implement these special boundary nodes. This approach is
straightforward, because the velocity gradients referred to in
Eq. �45� can be evaluated on corners and edges just as ev-
erywhere else. It must furthermore be pointed out that Eq.
�28� for the particle density cannot be evaluated on corners
and edges. In those cases, the density is extrapolated with
second-order accuracy from neighboring cells.

In all benchmark problems, a velocity U and a length L
are selected that are characteristic for the flow. The dynamics
of the flow is then described in a system of dimensionless
variables, independent of the numerical grid, in which U=1
and L=1. The equations of motion depend only on the di-
mensionless Reynolds number, defined as a function of the
kinematic fluid viscosity �,

Re =
UL

�
. �49�

The parameters used for the numerical implementation are
described by the number N, which is the number of grid
nodes used to resolve the length L, and the velocity Ulb,
representing the velocity U in a system of lattice units. This
is a common choice in LB simulations, because Ulb is pro-
portional to the Mach number of the fluid. It can therefore be
fine-tuned to make sure the flow is close enough to the limit
of incompressibility. For the numerical implementation of
the benchmarks, the prescribed velocity field for the initial
and/or boundary condition needs to be converted from di-
mensionless variables to lattice units. This is simply done by
multiplying the dimensionless velocity by Ulb. From these
definitions, the discrete parameters of the simulation are
characterized as follows. The grid interval �x is given by

�x =
1

N − 1
. �50�

The time lapse of an iteration �t is defined through the rela-
tion U=�x /�tUlb, which recovers the lattice-independent
form of the velocity. Given our choice of U=1, this leads to

�t = �xUlb. �51�

At a given time step, the numerical error is evaluated by
computing a l2-norm of the difference between the simulated
velocities ulb�rk� on grid nodes located at position rk, and the
dimensionless analytical solution uanalytic�rk�,

� =� 1

P
�
k=0

P−1 �ulb�rk�
Ulb

− uanalytic�rk��2

, �52�

where the sum runs over all P nodes of the numerical grid.

The parameters of the simulation for a varying resolution
N are adapted in order to keep the value of the Reynolds
number constant, and to prevent effects of fluid compress-
ibility from interfering with the accuracy of the result. Com-
pressibility errors �compr are known to scale as the square
Mach number and are therefore estimated by �compr=O�Ulb

2 �.
This error is required to decrease at least as fast as the dis-
cretization error ��x

=O�1 /Llb
2 �=O�1 /N2�. It follows from Eq.

�49� that this is achieved by keeping the viscosity �lb con-
stant when the grid resolution is modified.

The benchmark codes can be found from Ref. �18�. The
programs are based on the open source lattice Boltzmann
library OpenLB �19�, which is publicly available.

A. Steady plane channel flow (2D)

This 2D stationary flow evolves in a straight channel,
which extends in the x direction between x=0 and x= lx. The
walls of the channel are parallel to the x axis, and defined by
the equations y=0 for the lower wall, and y= ly for the upper
wall. A no-slip condition for the velocity is enforced on these
walls. The flow is characterized by a constant pressure drop
along the channel. This pressure drop can be obtained by
using pressure boundary conditions on the inlet and the out-
let. An alternative approach, which is used in this bench-
mark, is to enforce the velocity profile from the analytical
solution of the flow on the inlet and on the outlet. The ve-
locity is parallel to the walls, and the only nonzero compo-
nent ux is independent of x, ux=ux�y�. The height ly of the
channel is taken to represent the characteristic length L. The
maximum value of the velocity, which is measured in the
middle of the channel, is selected for the characteristic ve-
locity U. The analytic solution to this flow is given by the
parabolic Poiseuille profile, which, in dimensionless vari-
ables, reads as

ux�y� = 4�y − y2� . �53�

The pressure drop amounts to �p /�x=−8 /Re.
The two-dimensional channel flow is for many reasons an

inappropriate benchmark, and it is presented here in a his-
torical spirit, to conform with some authors of boundary con-
ditions that use it as a basic test case for their algorithm. One
shortcoming of this flow as a benchmark case is that the
components Sxx and Syy of the strain rate tensor S vanish in
the analytical solution. Boundary conditions that replace
only unknown particle populations �BC1 and BC2 in this
paper� are therefore automatically exempt from numerical
errors. This follows from the discussion in Sec. III B, where
the components �xx �on horizontal boundaries� and �yy �on
vertical boundaries� of the stress tensor are shown to be the
only degrees of freedom for which the boundary condition
could possibly be wrong. If the corner nodes are imple-
mented in an appropriate way, these two methods are shown
in Refs. �11,12� to solve the 2D channel flow with a precision
close to machine accuracy �the best accuracy one can expect
to obtain, given the limited precision of floating point values
on a computer�, independent of the grid resolution. Machine
accuracy is however not exhibited in the present benchmark,
because we chose to implement corner nodes in a generic
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way that works for all boundary conditions and for all types
of flows.

In this benchmark, the channel has quadratic shape �lx

= ly =1�, the grid resolution is varied from N=25 to N=400,
and the Reynolds number is Re=10. Compressibility effects
are controlled by setting Ulb=0.01 at a grid resolution N
=50. As discussed in the preceding paragraph, the velocity
Ulb is recomputed for different values of N in such a way as
to keep the viscosity �lb constant from one grid to another.
Figure 4�a� shows that all reviewed boundary conditions lead
to the expected second-order accuracy with respect to grid
resolution. Boundary conditions BC1 and BC2 are distinctly
more accurate, because their overall accuracy is only af-
fected by the error in corner nodes. It is furthermore ob-
served that the nonlinear finite-difference scheme of BC5 is
slightly more accurate than the linear approach of BC4. The
numerical stability of boundary conditions is explored in Fig.
4�b� by means of the maximum Reynolds number which can
be reached before numerical instabilities occur. The most
accurate boundary conditions, BC1 and BC2 are also the dis-
tinctly least stable. Most stable boundary conditions are
those based on a nonlocal algorithm, BC4 and BC5.

B. Oscillating plane channel flow (2D)

This laminar channel flow is also known as “Womersley
flow” on grounds of the analytical solution proposed by
Womersley �20�. It is defined by the same geometry as the
steady flow in Sec. V A. The pressure gradient is however
not constant, but oscillates in time. Before the reference ve-
locity U can be defined, the equations of the flow are written
in an arbitrary system of units, other than the dimensionless
one. In this system, the amplitude of the oscillations is de-
noted by A, and the frequency by �,

�p

�x
= − A cos��t� . �54�

In the low-frequency limit �→0, the solution to this flow is
defined by a succession of Poiseuille profiles, with oscillat-
ing amplitude,

ux�y,t� =
A

2�
�lyy − y2�cos��t� . �55�

The maximum velocity of the flow, reached in the middle of
the channel at time t=n2� /� for any integer value n, is
found to be

umax =
A

8�
L2. �56�

This value umax is used to define the reference velocity U, as
it characterizes the flow reasonably well when oscillations
are slow. The reference length L is described by the channel
height ly. As the flow depends on time, it is characterized by
two dimensionless parameters, which are the Reynolds num-
ber Re defined in Eq. �49�, and the Womersley number �,
defined as

� =
L

2
��

�
. �57�

In a system of dimensionless variables described by U and L,
the time-dependent solution to this flow is given by the
Womersley profile �20,21�,

ux�y,t� = Re�ei�2/Re t 8

i�2�1

−

cosh��2�� + i���y −
1

2
�

cosh��2

2
�� + i��� �� , �58�

where i is the imaginary unit, and Re means that the real part
of the formula needs to be evaluated.

The error � of the numerical result with respect to the
analytical solution of Eq. �58� is computed at each time step
by evaluation of Eq. �52� over the whole computational do-
main. The overall error �̄ of the simulation is defined as an
average of � over one time period. Only the asymptotic value
of �̄, reached after a large number of iterations, is accounted
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FIG. 4. �a� Numerical accuracy in a 2D channel flow. �b� Nu-
merical stability in a 2D channel flow. The maximum Reynolds
number which can be reached before numerical instabilities appear
is plotted.
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for. The initial transient regime of the fluid, and consequently
the choice of the initial condition, are irrelevant.

In this simulation, the geometry is quadratic �lx= ly =1�.
The Reynolds number is Re=1, and the lattice velocity is set
to Ulb=0.01 at a reference resolution of N=10. The numeri-
cal results are plotted in Fig. 5�a� for a value of �=2 and in
Fig. 5�b� for a value of �=5. All other parameters are chosen
to be the same as in the steady channel flow. Figure 4�a� can
also be included in this discussion, as it corresponds to the
limit �=0 in which the flow does not oscillate. It should be
pointed out that, as � increases, inertial effects on the flow
dominate over viscous effects. The velocity profile in the
bulk becomes progressively independent of the boundary
condition. As it can be seen from the simulations �see Fig.
5�b��, the result is practically independent of the chosen
boundary condition at a value of �=5.

C. Periodic array of vortices (2D)

The following benchmark measures the energy dissipation
during time evolution of a laminar flow without external en-
ergy input. The initial velocity field consists of an array of
counter-rotating vortices �22�. The flow is described by its
value inside a periodic box of size L�L. The flow velocity
u0 at any time t0 is derived from its stream function �0,
which is an eigenfunction of the Laplacian operator with
eigenvalue �,

�2�0 = ��0. �59�

The time evolution of this flow is characterized by an expo-
nential decrease of the velocity amplitude,

u�t� = u0e���t−t0� for t � t0. �60�

Among all eigenfunctions of the Laplacian, the following
initial stream function �0 was selected for the benchmark
�expressed in dimensionless variables�:

�0�x,y� =
1

2��m2 + n2
cos�2�mx�cos�2�ny� , �61�

where x and y are contained in the interval �0,1� and label the
two space directions. The velocity field is given by

ux,0�x,y� =
��0

�y
=

− cos�2�mx�sin�2�ny�

�m2

n2 + 1

�62a�

and

uy,0�x,y� = −
��0

�x
=

sin�2�mx�cos�2�ny�

� n2

m2 + 1

. �62b�

It is clear that �u0�x ,y���1 for all values of x and y, which
justifies the choice of the reference velocity U. The decay
rate � is found by solving the eigenvalue problem �59�,

� = − �m2 + n2� . �63�

The initial pressure distribution of the flow is evaluated by
solving the Poisson equation �2p=−�u ·��u:

p = − �n2 cos�4�mx� + m2 cos�4�ny�� . �64�

The dimensionless pressure p is converted as follows to the
density �lb, expressed in lattice units, �lb=1+ p�x

2 / �cs
2�t

2�,
where the discrete steps �x and �t are defined as in Eq. �50�.
This benchmark is formulated as an initial value problem.
The initial condition is therefore set up with special care,
using an approach described in Ref. �23� and based on an
original suggestion in Ref. �13�. The particle populations are
first initialized at an equilibrium distribution, based on the
desired value of u and p. The off-equilibrium parts of the
particle populations are then instantiated with the help of Eq.
�23�, with numerically computed velocity gradients. Al-
though the flow is periodic in both space directions, nonpe-
riodic boundary conditions are used, and the boundary veloc-
ity is explicitly imposed by use of the reviewed boundary
conditions. The velocity along the boundaries of this subdo-
main is set to the analytical value of Eq. �60� at every time
step with the help of the five tested boundary conditions.

Figure 6 displays the time evolution of the average energy
with different boundary conditions at a resolution N=8 and a
resolution N=32. The Reynolds number is Re=1, and the
reference velocity in lattice units is set to Ulb=0.01 at a grid
resolution N=8. In an initial regime, the energy decay is in
all cases exponential, as predicted by Eq. �60�. After reach-
ing a critical value of the time t, the curve starts oscillating
and deviates from the theoretical prediction. For the nonlocal
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FIG. 5. Numerical accuracy in an oscillating channel. �a� �=2
�slow oscillations�, �b� �=5 �fast oscillations�.
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boundary conditions BC4 and BC5, this deviation occurs ear-
lier than for the local ones. It is therefore concluded that the
nonlocal boundary conditions are less accurate for this prob-
lem.

D. Dipole-wall collision (2D)

This benchmark, based on Refs. �23,24�, analyzes the
time evolution of a self-propelled dipole confined within a
square box. The box is located in the geometrical domain �
−L ,L�� �−L ,L� and implements no-slip walls. The initial
condition describes two counter-rotating monopoles, one
with positive core vorticity at the position �x1 ,y1� and one
with negative core vorticity at �x2 ,y2�. This is obtained with
an initial velocity field u0= �u0 ,v0� which reads as follows in
dimensionless variables:

u0 = −
1

2
��e��y − y1�e−�r1/r0�2

+
1

2
��e��y − y2�e−�r2/r0�2

�65a�

and

v0 = +
1

2
��e��x − x1�e−�r1/r0�2

−
1

2
��e��x − x2�e−�r2/r0�2

.

�65b�

Here, the distance to the monopole centers is defined as ri

=��x−xi�2+ �y−yi�2. The parameter r0 labels the diameter of
a monopole and �e its core vorticity.

The average kinetic energy of this system at a given time
is defined by the expression

Ē�t� =
1

2
�

−1

1 �
−1

1

�u�2�x,t�d2x , �66�

and the average enstrophy by

�̄�t� =
1

2
�

−1

1 �
−1

1

�2�x,t�d2x , �67�

where �=�xv−�yu is the flow vorticity.
The dipole described by Eqs. �65a� and �65b� develops a

net momentum directed in the positive x direction and is
self-propelled toward the right-hand wall. The collision be-
tween the dipole and the no-slip wall is characterized by a
turbulent dynamics where the wall acts as a source of small-
scale vortices that originate from detached boundary layers.
This problem is therefore particularly interesting as a test for
the ability of boundary conditions to reproduce the dynamics
of boundary layers during collision. For this purpose, the
maximum value of the flow enstrophy, which is reached dur-
ing the dipole-wall collision, is evaluated and retained for a
comparison among boundary conditions. As no analytical re-
sult for this flow is known, the measured values are com-
pared against benchmark results obtained with a spectral
method in Ref. �24�.

In the benchmark, the initial core vorticity of the mono-
poles is fixed to �e=299.5286, which leads to an initial av-

erage kinetic energy of Ē�0�=2. Furthermore, the Reynolds
number and the monopole radius are set to Re=625 and r0
=0.1. The lattice velocity is set to Ulb=0.01 at a reference
resolution of N=300. The monopoles are aligned symmetri-
cally with the box, in such a way that the dipole-wall colli-
sion is frontal and takes place in the middle of the wall. The
position of the monopole centers is �x1 ,y1�= �0,0.1� and
�x2 ,y2�= �0,−0.1�. As in Sec. V C, the approach of Ref. �23�
is used to set up the initial condition. The initial pressure is
evaluated numerically, by solving the Poisson equation with
a successive over-relaxation �SOR� scheme, using an algo-
rithm described, e.g., in Ref. �25�. The off-equilibrium parts
of the particle populations are then instantiated with the help
of Eq. �23�, with numerically computed velocity gradients.

The boundary conditions BC1 and BC2 could not be used
for this problem, because they experienced numerical insta-
bilities at the required Reynolds number �the benchmark val-
ues in the literature start at Re=625�. These instabilities are
due to an inherent limitation of the boundary conditions, and
do not originate from the way the initial condition or the
boundary condition in corner nodes are treated. This possi-
bility was ruled out by initializing the population functions
with an equilibrium distribution, and keeping the corner
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FIG. 6. Time evolution of the average energy in the 2D periodic
array of vortices. The curves for the linear and the nonlinear finite-
difference methods overlap as far as one can distinguish visually.
Therefore, only the linear case is presented. A boundary condition is
considered to be of good quality if the point at which the curve
oscillates and departs from an exponential decay occurs late.
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nodes at an equilibrium distribution with constant pressure
throughout the simulation. Although this approach to setting
up initial states and boundaries tends to be exceptionally
stable, the simulations using BC1 and BC2 were still subject
to numerical instabilities.

The numerical results are presented in Fig. 7. Note that a
resolution of N=300, for example, stands for a total grid size
of 600�600, as the size of the system is 2�2 in dimension-
less variables. For a Reynolds number Re=625, all three
boundary conditions BC3, BC4, and BC5, the error decreases
roughly at a second-order rate. The local boundary condition
BC3 is however an order of magnitude more accurate than
the other candidates. This is striking, because BC3 is least
accurate in all benchmarks of laminar flows. It is concluded
that the local, cell-based approach of BC3 is particularly well
adapted to reproduce the dynamics of a boundary layer. A
possible interpretation is that the finite-difference approxima-
tion of velocity gradients in BC4 and BC5 becomes inaccu-
rate in the presence of a turbulent boundary layer due to
small-scale velocity variations.

E. Rectangular steady channel flow (3D)

This problem is a 3D generalization of the channel flow
presented in Sec. V A. This time, the channel extends in the
z direction. At every fixed value of z, the cross section is
rectangular, extending from x=0 to x=L, and from y=0 to
y=�L, where � is the aspect ratio of the cross section. The
pressure is independent of the x and the y coordinates, and
decreases linearly as a function of z. The velocity has a non-
zero component in z direction only, and depends on x and y,
uz=uz�x ,y�. As in the 2D case, nonlinear contributions to the
Navier-Stokes equation cancel out, and the velocity profile uz
is described as a solution of the following Poisson equation:

�2uz �
�2uz

�x2 +
�2uz

�y2 =
�p

�z
. �68�

As this equation is nonhomogeneous, the general solution is
described as the sum of a particular solution up and a general

solution uh to the homogeneous problem �2uz=0. The par-
ticular solution can be taken from the 2D flow in Sec. V A.
In dimensionless variables, it reads as

up�x,y� = 4�x − x2� . �69�

This settles the choice for the reference velocity U as being
the maximum velocity reached in a 2D channel. The pressure
drop is the same in the 3D as in the 2D case, �p /�z=
−8 /Re. The complete analytic solution to this 3D channel
flow is �26�

uz�x,y� = 4�x − x2� +
32

�3 �
n=0

+� � �− 1�n

�2n + 1�3

�cos��2n + 1��x�
cosh��2n + 1�

�y

�
�

cosh��2n + 1�
�

2
��� . �70�

Figure 8�a� shows results of numerical accuracy at Re=10.
The reference velocity is Ulb=0.01 at N=50, and the aspect
ratio is �=1. Numerical stability is explored in Fig. 8�b� for
a varying grid resolution. The numerical results in this 3D
benchmark are similar to those of the 2D application in Sec.
V A. The boundary condition BC1 is again much more ac-
curate than boundary conditions that replace all particle
populations. As in the 2D case, all but one component of the
strain rate tensor vanish in this flow, and some potential de-
ficiencies of BC1, as the one shown in Eq. �35�, might not be
visible in the benchmark. An unexpected result is that bound-
ary condition BC2, which in 2D applications achieves results
very similar to those of BC3, falls in the same category as the
nonlocal boundary conditions BC4 and BC5 in this 3D case.
Another remarkable difference with respect to 2D results is
that the nonlocal boundary conditions achieve unconditional
numerical stability in 3D, as soon as the grid resolution ex-
ceeds a certain threshold value. At this point, further inves-
tigations would be needed to decide if this difference is due
to different flow geometries �the analytical solutions in Eqs.
�53� and �70� are qualitatively different� or if 3D simulations
are inherently more stable than 2D ones for this type of
boundary condition.

VI. DISCUSSION AND CONCLUSION

Five boundary conditions for the lattice Boltzmann
method have been selected and presented in this paper. As it
is concluded from applying the results of a multiscale analy-
sis to boundary nodes, all methods are second-order accurate
with respect to the grid resolution. This implies that their
error varies asymptotically at the same rate. Beyond this
asymptotic estimate, the accuracy experienced in numerical
simulation differs however from one boundary condition to
another, depending on the flow geometry and the grid reso-
lution. A way to understand these differences might be to
take the multiscale analysis to a higher order O�	2� and dis-
cuss the couplings between higher-order terms and the hy-
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FIG. 7. Accuracy on the value of the enstrophy peak in a 2D
dipole-wall collision at Re=625. Boundary conditions BC1 and
BC2 could not be tested, because they are numerically unstable at
this Reynolds number.
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drodynamic scales. This technique is, for example, employed
in Ref. �27� to understand the asymptotic low Mach-number
behavior of a family of lattice Boltzmann models. Instead of
doing this, this paper produces benchmark results for the
boundary conditions in many different geometries. Those re-
sults are intended to serve as a reference to help select the
most appropriate boundary condition for a given lattice Bolt-
zmann simulation. It is emphasized that the results are valid
only for straight boundaries which are aligned with the nu-
merical grid. Different conclusions can be expected when
off-lattice boundaries are implemented.

In 2D simulations and at low Reynolds numbers, the Ina-
muro et al. and Zou-He boundary conditions, BC1 and BC2,
are found to produce the most accurate results. Both of them
preserve the known particle populations on a boundary node,
a fact which probably explains their excellent benchmark
performance. They retrieve a large amount of information
from the bulk of the fluid, and manipulate only a few particle
populations �3 out of 9�. It seems plausible that by doing this,
they retain information on higher-order terms which are not
visible in the hydrodynamic terms of the multiscale analysis.

The Inamuro et al. method is also very accurate in the 3D
benchmark, but this performance is not reproduced by the
Zou-He condition, which in this case compares to nonlocal
boundary conditions. The main deficiency of BC1 and BC2 is
that they are numerically unstable at �even moderately� high
Reynolds numbers. They could, for example, not be used to
simulate the turbulent dipole-wall collision presented in Sec.
V D.

In conclusion, BC1 and BC2 are the boundary conditions
of choice for the simulation of laminar 2D flows, when high
accuracy is important. The Inamuro et al. boundary condition
BC1 is also a good candidate for laminar 3D flows, although
it is not an explicit method, and thus tends to be complicated
to implement. The extension of BC2 to 3D flow does not
seem to make much sense, as it does not exhibit exceptional
accuracy, and is less stable than other approaches.

The regularized boundary condition BC3 uses a hybrid
approach, as it is local like BC1 and BC2, but it replaces all
particle populations, such as BC4 and BC5. As such, it is less
accurate than BC1 and BC2 in laminar flows, but it has the
ability to reach much higher Reynolds numbers. Further-
more, simulations of a turbulent dipole-wall collision show
that it reproduces the dynamics of boundary layers more ac-
curately than all other boundary conditions. Because of its
numerical stability, and because it is easy to implement in 2D
and 3D applications, BC3 is a good general-purpose method,
and seems to be the best candidate for high Reynolds number
flows.

The nonlocal boundary conditions BC4 and BC5, which
use a finite-difference scheme to approximate the off-
equilibrium part of particle populations, exhibit the best nu-
merical stability. In the laminar 3D benchmark, they are even
unconditionally stable on a sufficiently large grid. Their main
disadvantage is the nonlocality of their algorithm. This vio-
lates the basic principles of the LB method, may substan-
tially increase the complexity of a code, and even be an
obstacle to parallelizing the program in a straightforward
way. On the other hand, the boundary conditions BC4 and
BC5 are very general and may adapt well to a larger software
project. They are, for example, not bound to the lattice struc-
ture, and can be extended to the case of off-lattice bound-
aries, such as the one described in Ref. �28�. Boundary con-
dition BC5 takes into account nonlinear velocity terms in
off-equilibrium particle populations, which are neglected in
BC4. Thanks to this, it is slightly more accurate and more
stable. The difference is however so small that it does not
seem to justify the increased complexity and computational
burden.
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FIG. 8. �a� Numerical accuracy in a 3D channel flow. �b� Nu-
merical stability in a 3D channel flow. The maximum Reynolds
number which can be reached before numerical instabilities appear
is plotted. Boundary conditions based of finite-difference approxi-
mations �BC4 and BC5� are unconditionally stable at high grid res-
olution. Numerical values are therefore only reported in the un-
stable regime, up to N=25 for BC4 and up to N=20 for BC5.
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